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The resonaace8: below the inelastic (ns) threshold 04 elec- 

tron-hydrogen scattering are examhed by the projection operator 

technique of Feshbach. 

L. -_ 

This technique conve&s the problem to an 

eigenvalue problem for a projectedHamiltonian in which the auto- 
w - 
ionization levels of H- become t r u e  bound states. The number of levels 

of this problem is found to be infinite and cluster at the n=2 

level of H. The relative spachgs of the levels are identical to 

the resonances in e-H scattering as derived by Gailitis and Dauiburg. 

I . 



I INTRODUCTION 
1 Recently, O'Malley and Geltmn have u t i l i zed  the projec- 
h 

t ion  operator technique of F e s h b a d ,  as applied t o  the atomic case 

by Hahn, O'Malley and Spruch 3 , t o  calculate the compound auto- 

ionization s ta tes  of H- below the n+ excitation threshold fo r  e-H 

projects out (removes ) the ground s t a t e  of hydrogen from the t o t a l  

wave function, and therefore gives r i s e  on ly  t o  asymptotically vanish- 

ing terms even for  a wave f'unction tha t  would otherwise be capable of 

describing e-H e l a s t i c  scattering. Thus one can formulate an 

ordinary eigenvalue problem for the Schrbldinger equation w i t h  a 

projected wave function Q : 

4 
and, following Fano , O'Malley and Geltman have shown tha t  a t  

c 

close t o  the eigenvalues of the above problem, 
L T  

energies 

the phase sh i f t  associated with the scattering problem, described 

by 

responding t o  resgmnces i n  the e l a s t i c  scattering. 

, undergoes an increase of approximately T radians cor- 

Although an explicit  formula f o r  amwas given 1 , it involves 

coupling t o  the continuum part of . Thus the O'Malley-Geltmn 

calculations were confined t o  below the ine l a s t i c  (2s)  

threshold fo r  H- (e-H scattering) and He (e-He+ scattering).  

The neglect of am would indeed be jus t i f iab le  as agreement 
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with other scattering calculations596’ and experiments 8 showed 1 . 
However;there is  a special  circumstance in  the case of e l a s t i c  

scattering j u s t  below the 2s threshold which mkes f o r  an i n f i n i t e  

n u d e r  of resonances which cluster on the 2s threshold. This 

remarkable result was deduced by Gailitis and Damburg 9 on the 

basis  of close-coupling scattering calculations above threshold 

which were then extrapolated below threshold. The physical bas i s  

f o r  t h i s  phenomenon derives from the very long range nature of 

the potent ia l  ( r-”) which i n  turn stems from the degeneracy of the 

2s and 2p levels  of hydrogen (and it is  only i n  t h i s  approximation 

t h a t  the in f in i ty  of resonances applies). On the other hand the 

1 actua l  calculations of O’Malley and Geltmn yielded only two 

resonances i n  each channel, which, Aalthough it was i n  accord with 
result 

r 

b 
previous predictions of two resonances , leaves open the question of 

whether the higher resonances are present below threshold i n  the 

ac tua l  spectrum of 4q or  whether they appear above the 2s threshold 

and are only brought below threshold by the uncalculated Am 

The formal def-inition of the projectbnoperator Q as it 

applies t o  t h i s  problem has been given by Hahn, O’Malley, and 

spruch2 : 
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%(EL) i s  the ground s t a t e  of hydrogen Occupied by the i t h  

par t ic le  (i = 1,~). 

I n  the next section we s h a l l  show tha t  the spectrum of discrete 

levels of 9 is  indeed in f in i t e  below threshold, and we sha l l  

w h i a  i s  derpje a. fo rnda .  fer rpl&i~.re s p c i x a  nf 

ident ical  t o  that  of G a i l i t i s  and Damburgg fo r  E-, . 

I1 ANALYSIS 

We start with  a close-coupling wave function for the *S s t a t e  

of e-H scattering including 1s-2s-2p s t a t e s  of hydrogen: 

where Rhl 
straightforward application of Q on 7& 

is  r times the given radial wave function. A 

now yields 
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where 

Here we note tha t  one can add any amount of RzS t o  u‘ and simul- 

taneously subtract the same amount t o  R 1 s  from v’ without changing 

Thus by selecting this amount as c, , i.e., by redefining u and v 

as given i n  (2.4) : 

. 
- 
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we find, without having changed 9 , tha t  

Therefore without any l o s s  of generality we can take (2.2b) as 

the general form of 

vanishing asymptotic form below the n=2 threshold: 

Q 2 , and we see that it has the desired 

4 -$ 
term absent. 

derived from the integro-differential  equations f o r  the matter ing 

in  the close coupling approximation’’ by dropping a l l  terms depending 

on u andRls.  A t  large distances they reduce, for  S states, t o  

is i n  fac t  the close coupling wave function with the 1s 

The equations which v and w sat ise  m y  be simply 
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ll 
These equations may be diagonalized so  thak two l inear  combinations 

of v and w sa t i s fy  two uncoupled equations. The one which contains 

the a t t rac t ive  r-2 potent ia l  corresponds t o  

The diagonalized equation is  
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In this equation is  the energy i n  rydbergs relative t o  

the  2s threshold. 

can a2peal t o  an argument of h d a u  and Lifshitz’ t o  answer 

Having gotten the equation i n  this form, we 

affirmatively the question of whether there are an i n f i n i t e  number 

of bound states of F ( r ) .  For theyu have shown that any problem 

governed by the potent ia l  i n  (2.8) fo r  large r and well-behaved 

f o r  small r has a solution with an i n f i n i t e  nuniber of nodes as 

[+, 5 . Thus fo r  negative and small, one can f ind  bound 

s t a t e  solutions w i t h  any arb i t ra ry  number of nodes, i.e., there 

are an in f in i t e  number of bound states with k?< 0 

This mch w a s  also cleas t o  Ikmburg and Gailitisg as a 

perusal of t he i r  paper shows. The new point thus far has been 

tha t  the elimination of the Is s t a t e  from the close-coupling wave 

function can be put on a more rigorous basis  by a consistent 

application of the &operator. Below we s h a l l  actually evaluate 

the eigenvalue spectrum of F. 

Letting 

€ =  IC/ > 
(2.9) .. 
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one can convince oneself that the solution of (2.8) which vanishes 

at infinity is 

where 

(1 

is the Hankel function 

(2.10) 

J, andN, are the Bessel and Neumann Arnctions respectively. 

For Urge values of r 13 
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For values of r < a the equations fo r  F and a second l inear  

combination of v and w, c a l l  it G = v + [ (1 + &7)/63w, w i l l  be 

coupled. "hey cannot be decoupled by any l inear  transformation. 

However, it i s  certainly possible t o  define a non-local potential  

w h i c h  w i l l  describe an mcm~pled F ( r )  6 m ~  t e  the origin. 

non-local potential  can i n  turn be approximated a loca l  potential  

V e ( r )  a t  leas t  fo r  values of r s l igh t ly  below the value of r = a 

where Eq. (2.6) i s  valid. 

w i l l  continue t o  decrease (increase i n  mgnitude) u n t i l  such a point 

r = b where the centrif'ugal barr ier  forces the potent ia l  up t o  

inf ini ty .  I. e. , 

14 

This 

Now it can safely be assumed that V e ( r )  

I V e ( r ) l  2 I V ( a )  I = ; b < r e a. 

Then fo r  any energy satisfying 

the wave function F ( r )  w i l l  be v i r tua l ly  independent of E for  r 5 a. 

L e t  the logarithmic derivative of F ( r )  at  r = a, as obtained by integ- 

ration from the origin i n  the presence of the actual  potential, be 

(2.13) 

(2.14) 
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defined by 

1 
F a  dr t e - n  . 

To repeat, f o r  energies satisfying (2.14), t i s  v i r tua l ly  independent 

of e .  

This logarithmic derivative must be matched t o  that of F ( r )  

f o r  r > a i n  order t o  obtain the allowed bound s ta tes .  In t h i s  

region F( r )  i s  given by (2.10). It is  shown below tha t  as long 

as we only consider energies consistent with (2.14), the small 

argument expansion of the Hankel function i n  (2.10) may be used 

i n  the vicini ty  of r = a. 

13 To see t h i s  we consider the small argument expansion 

(2.15) 

(2.16) 

1 
Putting i n  the imaginary values 9 = ia and z = i e z r  yields the 
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Therefore, with no further res t r ic t ion  we have, t o  within a 



proportionality constant 

and 

1 
= - U cot [ a  ~n (&.e * a)  - c p ]  + 2a 1 . F(a)’ dr 

The allowed bound s t a t e  energies may be found by equating t h i s  

t o  t, the  value from the inter ior ,  and solving fo r  e*  assuming, of 

course, that t is independent of 6 .  

(2.18) 

(2.19) 

(2.20) 



- 14 - 

Let the energy of the lowest bound state be designated by el. 

I f  e l  sa t i s f i e s  (2.14), the successively higher s t a t e s  are given by 

the recursion relation: 

as i s  easi ly  seen from (2.20). 

the formula for  the r a t i o  of resonant energies obtained by Gailitis 

and Damburg . This relat ion becones more accurate with increasing 

n, because of the decreasing dependence of  t on e, and because of the 

increasing val idi ty  of the f irst  order expansion (2.17). We now look 

at the case n = 1. 

Equation (2.21) i s  ident ica l  t o  

9 

1 O’Malley and Geltmaa have given fo r  the energy of the lowest 

lying ‘s bound s ta te :  

(2.21) 
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el = 0.645 ev = 0.0474 Rydbergs. 

If t h i s  energy i s  t o  satisf'y (2.14))the matching radius which we 

choose must sa t i s fy  

where a l l  lengths are given i n  Bohr radii .  

s a t i s f i ed  fairly well. However, the extent t o  which the asymptotic 

equations are  valid a t  such a smll radius i s  questionable. The 

potentials coupling i n  other channels could give 10% effects  a t  

r = 5 quite easily.  

(2.21) f o r  n = 1 i s  not serious, since with 81 

one obtains 

For a = 5, (2.14) i s  

But allowing a 10% error  i n  the relat ion 

fixed by (2.22) 

(2.22) 
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This resul t  corresponds t o  a fairly narrowly defined second 

eigenvalue; namely (rela%ive t o  the ground s t a t e  o f  hydrogen) : 

E2 = (10.167+ - 0.004) e.v. 

Furthermore, since the asymptotic form of the 2s-2p equations, 

(2.6), contains no exchange terms, Eq. (2.19) must hold fo r  t r i p l e t  

as well as s inglet  S s ta tes  (a lbe i t  with a different  e l ) .  

other values of the t o t a l  angular momentum one has equations similar 

t o  (2.6) with al tered numerical coefficients of the r-2 terms 

Only i n  P and D s ta tes  w i l l  the diagonalization yield a net at-  

tractive r-2 potential  with associated coefficients a = 1.86 and 0.75 

respectively . With these changes i n  a, Eq. (2.19) also holds fo r  

s ta tes  of both spins. 

For 

15 . 

16 

I n  Table I, we summarize the numerical results for  the f i r s t  

three resonances for  S and P states .  

t o  the ground s ta te  of hydrogen (which i s  appropriate fo r  comparison 

with resonant energies i n  the e l a s t i c  scattering of electrons from 

hydrogen). 

lowest state in  each case has been chosen t o  agree with the  calculated 

The energies are given re la t ive  

The S and P s ta tes  of both spins are included and the 

I 
results of O'Malley and Geltman . 
case i s  i n  accord with the original prediction of two r e ~ o a a n c e s ~ ~ ~ ,  

The second s ta tes ,  which i n  the l S  
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then provide a point of comparison w i t h  the O'Malley-Geltman resu l t .  

It can be seen that our second states par t icular ly  i n  the I S  

case a re  lower than the corresponding O'Malley-Geltmn s ta tes .  

The discrepancy i n  e 2  is  0.011 e.v. which, by comparison t o  (2.23) 

is  seen t o  be a difference of 30%. 

levels  as we have obtained i s  almost certainly correct. This is  again 

because of the tremendously long range of the r-2 potential. 

quantitative estimate of t h i s  potential  can be obtained by observing 

when the second term i n  the asymptotic expansion (2.12) becomes 

comparable t o  the  first. For any eigenfunction n, we define t h i s  

value of r by Rn: 

The quali tative lowering of the 

A 

a2+1 
Rn = 

I n  the *S case R1 I: 100 a0 where we have expl ic i t ly  appended the 

un i t  of length a0 (the Bohr radius).  Having used a not uSlusual 
p..tal relative mve type var ia t ional  wave function with up t o  25 terms, it 
Iz 

is  not surprising that O'Malley and Geltman could get an accurate 

lowest state whose raage (25 ao) i s  not very much more than an ordinary 

type bound s t a t e  wave f'unction. However, the range of the second 

(2.24) 

s t a t e  (100 ao) by a conventional variational wave f'unction below the 
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n = 2 threshold at a l l .  There can be l i t t l e  question tha t  the value 

i t s e l f  must be too high. 



One of US (A. Tb) would like to thank Dr. Richard Drachman 
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TABLE I 

a Autoionization levels of H- ( i n  eV above the ground of hydrogen ) 

State  

3s 

+P 

3P 

b 0 'Malley-Geltman 

9.559 

10.178 
c 

10.149 

10.202 
- 

io. 178 

io. 203 

9-727 

10.198 
-- - 

C This paper 

9.559 

10.166 8 
io. 2016 

10.149 

io .  2006 

io .  2036 

io.  178 

10.2029 

10.2037 

9.727 

io.  1875 

10.2032 

a Our numbers axe based upon the rydberg being taken as exactly 

13.605 ev. 

b From reference 1. 

c This column contains only the f i r s t  three of the resonances 

for  each s t a t e  of the in f in i ty  of resonances predicted by Eq. (2.19). 


